1	Using Sound to Represent Spatial Data in ArcGIS ¹		
2		Nick Bearman ^{a2} , Peter F. Fisher ^a	
3		^a Department of Geography, University of Leicester, Leicester, LE1 7RH, UK	
4			
5	Abstract		

An extension to ESRI's ArcGIS was created to allow spatial data to be represented using sound. A 6 number of previous studies have used sound in combination with visual stimuli, but only a limited 7 8 selection have looked at this with explicit reference to spatial data and none have created an extension for industry standard GIS software. The extension can sonify any raster data layer and 9 10 represent this using piano notes. The user can choose from a number of different scales of piano notes and decide how the program plays the sound. This flexibility allows the extension to 11 12 effectively represent a number of different types of data. The extension was evaluated in one-to-one 13 semi-structured interviews with geographical information professionals, who explored aspects of a 14 number of different data sets. Further research is needed to discover the best use of sound in a spatial 15 data context, both in terms of which sounds to use and what data are most effectively represented 16 using those sounds.

17

18

Keywords: GIS, sonification, tone, note, uncertainty, ArcMap

19

20 1. Introduction

21 Extensive research has developed the tools for visualisation of spatial data enabling many

22 novel methods of interactive visualisation for exploratory analysis (Dykes et al., 2005), spawning the

¹ Code available from server at <u>http://www.nickbearman.me.uk/go/bearman_fisher_2011</u>.

² Corresponding author. Present address: School of Environmental Science, University of East Anglia, Norwich, NR4 7TJ, Phone: +44(0)7717 745715, Fax: +44(0)1603 591327, Email: <u>n.bearman@uea.ac.uk</u>

newer field of geovisual analytics (Andrienko et al., 2007). The methods discussed by these and most other researchers involved in visualisation of geospatial information, however, employ only visual stimuli. Displays are increasingly complex and the visual capabilities of many users are being challenged (Turkey, 1990), sometimes to the degree where the visual sense is saturated and to represent more data another sense is required (Hughes, 1996). Sound has been suggested as a suitable tool for the presentation of information in additional to the traditional visual methods, and has received a limited amount of attention in the literature.

30 This project presents a sonification tool which enables the user to hear sounds associated with 31 the magnitudes of unvisualised (and often unvisualisable) spatial information. Fisher (1994) was one 32 of the early implementations of sonification, using sound to represent uncertainty in land cover 33 classification from a satellite image, where it would be problematic to show uncertainty visually. 34 This work brings the concept up to date with modern, commercial GIS software (ArcGIS 9.2 - 10) 35 and covers a broader range of examples, height (DEM) and a cartographic application showing 36 displacement. The software is also evaluated by a focus group (n = 15) of professional geographic 37 information users from the Ordnance Survey. The concept of sonification has developed significantly 38 and fundamentally changed over the past 20 years (Hermann, 2008) driven by both technological and 39 conceptual developments. Combining sonification with visualisation is going to be fundamental to 40 understanding large and complex data sets in the future and the increasing amount of geoscience data 41 will benefit from new, better and novel methods of representation in many different circumstances. 42 This paper presents a review of the reasons for using sound in this manner, and highlights previous attempts to provide sonification of spatial information. The tool itself is then outlined, 43 44 example datasets are presented, and finally evaluation of the tool with these datasets by a group of 15 45 geographical information professionals is discussed.

46

47 2. Literature Review

48 **2.1.** Sensory Alternatives

49 It is not unusual for the visual sense to be saturated in a GIS environment, particularly when there is a large amount of data to display, or if the data has an element of uncertainty which has 50 51 traditionally been very difficult to display visually (Appleton et al., 2004). While sonification is not 52 limited to uncertainty, it is a frequent example because often the uncertainty data covers the same 53 spatial area as the underlying data (e.g. if the underlying data is temperature, the uncertainty could be 54 range in temperature) and many of the visual methods to represent the uncertainty would obscure the 55 underlying data (e.g. blurring, highlighting or hatching). As well as being used to represent extra 56 'layer(s)' of information, sound could be used to reaffirm information shown visually, which results 57 in greater understanding by the user (Bearman & Lovett, 2010).

58 With modern computers it is possible to use other human senses to communicate information; 59 taste and smell are very difficult to control technically, both from hardware and specificity points of 60 view (but the use of smell has been attempted by Brewster et al. 2006) and it would be quite difficult 61 for these senses to be quantified and used to show ordinal data. Work has been done using touch 62 (haptic) interfaces, but these require specialised hardware which can be expensive to purchase 63 (Jacobson et al., 2002). Sound is an easily accessible alternative, as the hardware is readily available 64 and people are familiar with listening to sound in many different situations. Sound is also considered the most powerful sense in the body after vision (Fortin et al., 2007) and is technically the easiest to 65 66 achieve. Sound, however, would still be novel to geoinformation users and training may be necessary 67 (Pauletto & Hunt, 2009).

68 Krygier (1994) reviews the use of sound to represent spatial data and highlights 9 different 69 aspects of sound that could be altered, including location, loudness, pitch, register, timbre, duration, 70 rate of change, order and attack/decay. There are limits on how these different aspects can be 71 combined, but conveying one set of data (or metadata) is certainly possible, and some tests have worked with multiple sound variables for exploration of multivariate data (e.g. Flowers et al., 1996).
The work in this paper uses a single sound variable, to reduce the complexity of the task for users.
Gaver (1989) highlights the fact that sound is a transient phenomenon (whereas vision is
generally a static phenomenon) and this must be taken into account whenever sound is used.
Therefore sound cannot be used as a simple substitution for vision, as it is unable to communicate an
overall impression or pattern of the data. However, if used correctly it could be used to represent a
large amount of information over a small spatial area.

Together, the work by Krygier and Gaver gives the main overview of the use of sound from a theoretical point of view. A number of prototypes based on these principles have been created in various disciplines; the next section reviews their implementation and, where carried out, user testing.

83

84 2.2. Previous Examples using Sound to Represent Spatial Data

85 One of the most common applications of sound with spatial data is for maps or navigational 86 aids for people with visual impairments. Zhao et al. (2008) developed 'iSonic' which is a 87 geographical data exploration tool for the blind, splitting the map data shown on screen into a 3x3 88 matrix, which is then sonified and accessed by the user through the numeric keypad (numbers 1 to 89 9). When the user pressed a number, the data in that quadrant would be read out using a synthesized 90 voice. This does highlight the limited information that can be represented using sound, but even with 91 this limitation it appears to work reasonably well. Miele et al. (2006) created an example using a 92 combination of sound and tactile interface, with the overall spatial data (e.g. streets, buildings) 93 shown using tactile devices, and associated information (e.g. street names) read out on demand. 94 Users could also add their own recordings as 'audio tags' at specific locations on the map. Sound can also be used to augment the visual senses, and arguably this is where it can be 95 96 significantly more powerful than either vision or sound alone. Fisher (1994) and Veregin et al.

97 (1993) developed different methods of using sound with spatial data when GIS technology was at a 98 relatively early stage. Fisher used the example of using uncertainty of classified images for the sound 99 and Veregin used the example of soil map quality. Lodha et al. (1996 & 1997) created what they termed a 'sonification toolkit' which was designed to allow users to sonify geographic data. The 100 101 users could choose how to relate different aspects of sound (e.g. tempo, volume or pitch) to 102 geographic variables, which were triggered as the mouse moved over them. They also singled out 103 uncertainty as warranting individual attention. These examples were early implementations of 104 sonification and were limited by the technology available at the time. As computer technology developed, so did the scope and potential of sonification 105

106 Gluck (2000) used sound as a way to show different levels of environmental risk in counties 107 in New York. They experimented with a number of different ways of sonifying the same data, 108 including the use of ranges of sound, multiple notes and chords. They concluded that using sound 109 and vision in conjunction with each other worked particularly well, giving greater information and 110 understanding than either would separately. However this was only a pilot study with a small number 111 of evaluators. Jeong & Gluck (2003) completed a set of user testing (n=51) comparing haptic, sonic 112 and combined display methods. Participants reported that they preferred the combined (haptic and 113 sound) method, although the evaluation showed that this was less effective than haptic alone. The sound methodology altered volume, which may have limited the effectiveness of sound in this 114 115 situation because of the limited variations available for volume. MacVeigh & Jacobson (2007) 116 created a similar example, this time using different land use types (sea, land and harbour) and 117 concluded that it was a very useful concept, but did not evaluate this with any users.

118 Most of the above examples (apart from Jeong & Gluck) did not carry out any significant 119 user testing to evaluate the effectiveness of using sound for their stated purpose. This may have been 120 because the stand alone nature of the product made it difficult to roll it out to large numbers of 121 computers (for evaluation) or limited time and resources. MacVeigh and Jacobson suggest that sound 122 capabilities could be created as an extension to commercial GIS software which would allow easier123 use, testing and evaluation of this technique.

124

125 **3.** Methodology

126

127 **3.1.** The Sonification Tool

The extension was written as an ArcObject in VBA (Visual Basic for Applications) and is an independent piece of code that can be used in ArcGIS versions 9.2-10 (ESRI, 2011). This software was chosen because it is an industry standard product, with a freely available piece of code used to provide sound interaction (Oliveira, 2008) using the MIDI interface. The program was designed to be simple to use for geographic information professionals and sufficiently adaptable to allow the user to choose different types of sound for use with different data sets. The program was implemented via a custom toolbar in ArcGIS. When the tool is in use, the

134 The program was implemented via a custom toolbar in ArcGIS. when the tool is in use, the 135 pointer triggers sound (musical notes) based on the data at its current location. Only raster data sets 136 can be interpreted in this version of the program, but the concept could easily be extended to vector 137 data sets.

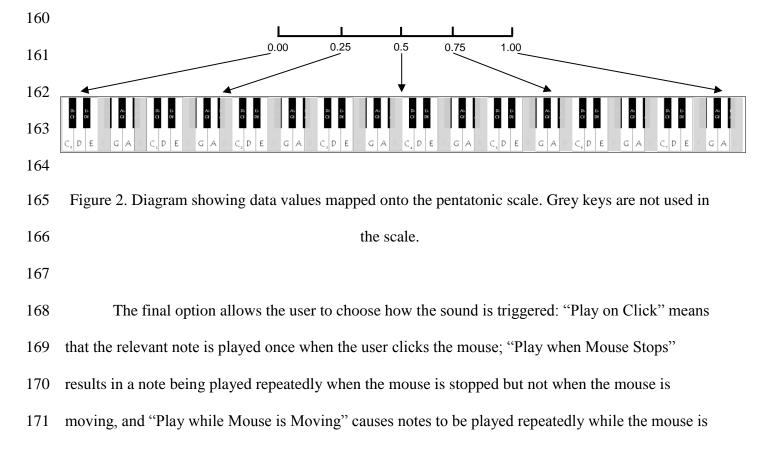
Sound Options	×
Please select the required scale:	
C Major (C, D, E, F, G, A, B) 50 🛛 💆	Musical Scale
The current layer is Snowdonia DTM Please select the Layer required:	
Snowdonia DTM (10m)	Layer
Please enter the Band number required:	
dtm_10m	
Sound Playing Options	
C Play on Click	
Play when Mouse Stops	Sound Playing
C Play while Mouse is Moving	
OK Cancel	

139

140 Figure 1. Settings menu, accessed by right-clicking on the map with the tool selected.

141

142 There are three options for the user to choose (Figure 1): the layer to be sonified, the musical scale to use, and the sound playing option to use. The first option allows the user to choose any of the 143 144 raster data layers within the current project (and which band within that layer) to be sonified. 145 The second option allows the user to choose the musical scale. The notes used are standard 146 white piano notes, taken from the range of white notes (i.e. natural notes, not sharps / flats) on a 147 piano. There are five different musical scales available, with the number of notes varying from 8 to 148 50. The scales use a particular set of notes (such as C, E & G), which is then repeated across a number of octaves. The available scales are listed in Table 1. 149


150

Scale Name	Notes Used	Total Number of Notes
C Major	C, D, E, F, G, A, B	50
Pentatonic	C, D, E, G, A	36
Arpeggio	C, E, G	22
C & G	C, G	15
C Octave	С	8

151

Table 1. The different scales used, with the notes used and total number of notes.

The scales available were chosen based on music theory – for example the notes C, E & G form a major triad and so sound harmonious together (Burrus, 2009). The Pentatonic scale is also a standard musical scale and C Major is all the natural notes available. C Octave was included to see if participants could differentiate between the same note in different octaves. Once the scale is chosen, the values from the data set are stretched along the scale in an equal interval fashion, with the lowest value being the lowest note, and the highest value the highest note (Figure 2).

- 172 moving over the data.
- 173

```
174 3.2. Data
```

A number of datasets were used with the above tool to evaluate the use of sound to representspatial data.

178 3.2.1. Snowdonia Aerial Photos and DEM

The first dataset used aerial photos of Snowdonia and the surrounding area from the imagery layer of MasterMap (Ordnance Survey, 2008a). A DEM (LandForm, 10m resolution) of the same area (EDINA, 2008) was also obtained but was not visible to users, being sonified instead: lower- and higher-pitched piano notes were used to represent lower and higher elevations respectively. Users could then, for example, trace the path up to the summit of Snowdon, and hear the notes increase in pitch until the summit is reached (see Figure 3 and video at <u>http://vimeo.com/22290359</u> or

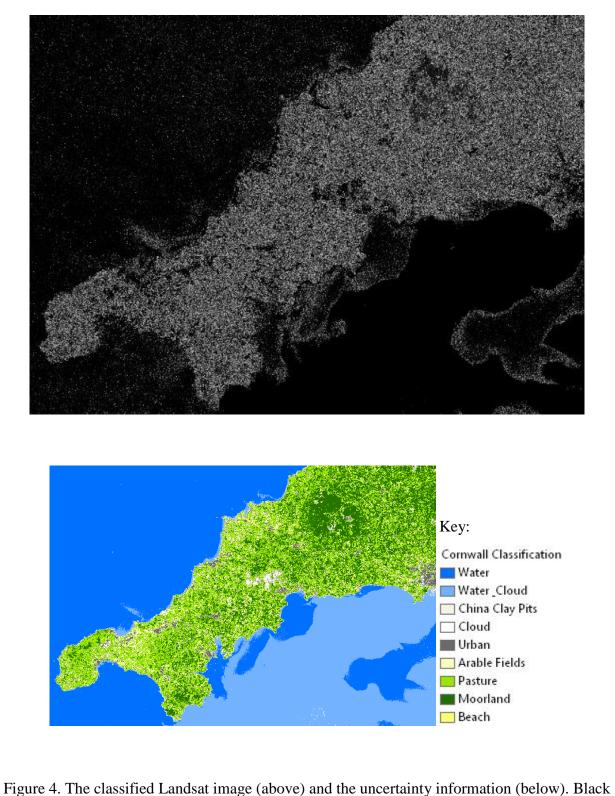
185 <u>http://www.nickbearman.me.uk/go/bearman_fisher_2011</u>).

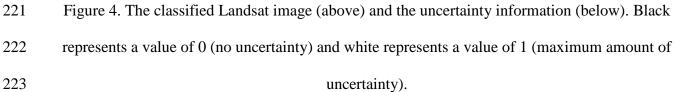
186

187

Figure 3. Snowdonia Aerial Photograph and DEM example in ArcMap. The white areas in the DTM
 represent flat areas and are errors from the data conversion. The line shows one of the routes up
 Snowdon, and this was traced using the mouse to show how elevation changed from the base to the
 peak. Ordnance Survey. © Crown Copyright. All rights reserved

193


194 3.2.2. Cornwall Classification Uncertainty


The term 'uncertainty' has many different meanings in relation to spatial data (Zhang & Goodchild, 2002); for this paper the term refers to measurement based error i.e. how different an object is from its value in real life. The example used is classification from remote sensing, and the uncertainty is referring to whether the pixel is correctly classified (Fisher, 1994). This type of uncertainty has often been ignored by common GIS solutions (Unwin, 1995) but is beginning to be addressed.

201 Uncertainty data is often not represented effectively because there are visual limits on the amount of information that can be displayed (MacEachren, 1992). More recently, Appleton et al. 202 203 (2004), considered the ways of representing uncertainty in landscape visualisation, but the various 204 options they outline can obscure the underlying data or severely limit the amount of uncertainty 205 information that can be shown. However, such data is particularly important in the growing realm of 206 scenario-based work relating to environmental futures; an example of this is the UK Climate 207 Projections 2009 dataset, whose projections are provided with probabilistic information which must 208 be represented and understood in order to effectively use the data (Jenkins et al., 2008).

209

In this work a Landsat ETM+ satellite image from 24/07/1999 (USGS, 2008) of Cornwall was used, with sound representing the uncertainty of the classification of each pixel. This was classified with a Maximum Likelihood Classification (MLC) from the BAYCLASS function in IDRISI Andes (Clark Labs, 2008). The MLC was used to represented the level of uncertainty of the classification on a pixel by pixel basis, with values from 0 (low uncertainty) to 1 (high uncertainty) (Figure 4).

226 3.2.3. Displacement

The most abstract data evaluated shows object displacement as a result of cartographic generalisation. To allow display at different scales, particularly very small scales (e.g. 1:1 000 000), spatial features may be moved from their true location to avoid conflict with others on the map, or enlarged to ensure that the more important features are clearly visible. Figure 5 shows Shirley Warren, Southampton; the road is from the ITN Layer and buildings from the topography layer of Ordnance Survey MasterMap® (Ordnance Survey, 2008b).

Figure 5. Generalisation example with the original location of the buildings shown in a grey outline, the new location shown in orange (left and above), and the displacement shown in blue (below, this would be sonified). *Ordnance Survey*. © *Crown Copyright. All rights reserved*

244

245 The building displacement was calculated using Radius Clarity (1Spatial, 2008) and the vector

246 displacement data was converted into raster format, to allow the data to work with the extension.

Figure 5 shows the displacement (in blue) which was sonified, with a higher note representing ahigher level of displacement.

249

250 **4.** Evaluation

Professional geographic information users (n=15) from the Ordnance Survey formed a focus group to evaluate the software. All the participants used GIS regularly, and understood the issues surrounding the use of spatial data and the potential effects of uncertainty. On a one-to-one semistructured interview basis, their background and experience was recorded, as well as their views on the tool. They were given a demonstration of the tool, allowed to use it freely and then asked for their feedback and suggestions for future improvements.

The principle of sonification was very new to the majority of the participants, but they adapted to it very quickly, and the majority of them reported that the sound added something to the data exploration experience. While the specifics of the sounds used could be improved, as explored below, the principle appears to hold a significant amount of promise.

261 The method used to play the piano notes was felt to be too repetitive; participants preferred 262 that the sound changed smoothly from one note to the next, rather than being resounded every 10ms. 263 A different instrument that had more sustained notes would have helped, such as an organ or brass instrument. The C Major scale, consisting of the natural piano notes (white keys, n=50) was felt to 264 265 utilise too many notes; one participant described it as sounding 'a bit scary' and having 'bum notes', 266 by which they meant the notes were discordant. Scales with fewer notes were preferred, and the Arpeggio and Pentatonic scales were seen as best because they sounded more harmonious; they are 267 often used in music for this reason. 268

While there was a general trend for preferred combinations of data and interaction methods, this did vary between participants. It was suggested that harmonious or dissonant chords could be used instead of the single note scales provided in the program. Therefore a harmonious chord would 272 represent high accuracy and a dissonant chord low accuracy. More research would be required to
273 establish whether a level of musical experience is required for this to be understood. Another
274 suggestion was to use different instruments, to allow more than one variable to be represented at
275 once. Such suggestions, while interesting, have great potential to make the tool too complex –
276 something which should be avoided as the user is already dealing with a relatively unfamiliar
277 interaction method.

278 Participants generally found it easy to compare the relative difference between sonified 279 values; one participant specifically noted that the direction of the scale (i.e. low notes = low 280 accuracy) was intuitive and therefore the sounds made logical sense. However, it was difficult to associate them with an absolute value (i.e. is that value 0.6 or 0.7; is that cell's uncertainty twice as 281 282 high as this cell's?). Whilst this obviously depends on the data set involved, some orientation of the 283 value within the dataset would assist. This could be done by showing a histogram of the data with the 284 currently-selected value highlighted. For the spatially large data sets, it was suggested that an 285 average value could be useful, which would allow the user to decide whether they needed to zoom in 286 for more detail. This could take the form of a resizeable, movable polygon (similar to a focal 287 operation in raster processing) which summarises and presents the data to the user sonically. It was 288 suggested that peoples' abilities to utilise the sonification effectively would improve with their 289 previous knowledge of the data set and with experience of using the tool. These aspects could not be 290 investigated in the time available but would be appropriate for future research.

The data examples of data provided have different complexity levels and the simpler examples ones were easier for the participants to understand than the more complex ones. It was common for particular interaction methods (such as "Play while Mouse is Moving") to work most effectively with different examples (such as Snowdonia Aerial Photos and DEM). Data that was continuous (such as height, where there is likely to be a gradual progression from cell to cell) worked well with "Play while Mouse is Moving" which provides a large amount of information to the user through the sonic channel, where as data from the Cornwall Classification Uncertainty example was discrete and adjacent cells are not necessarily similar in value. Therefore "Play on Click" is a more effective method, as this provides the user with the information at a slower and more controllable rate.

301

302 **5.** Conclusion

This study has evaluated how sound can be used to represent spatial data, using piano notes and data examples within ArcGIS. Sound has been utilised in similar ways before, but with a general lack of both user evaluation and integration with an industry standard GIS. Both are required for this technique be used more widely (MacVeigh & Jacobson, 2007).

307 The focus group results suggest that continuous data sets (such as Snowdonia Aerial Photos 308 and DEM) could be sonified and understood more easily than discrete ones because of the lower 309 variability of the data, but at a general level all of the participants easily understood the link between 310 note pitch and data value, and felt they could use information conveyed by sonification. Participants 311 suggested a number of improvements to make the sonification easier to use and understand, including variations to the sounds used in terms of voice, harmony and duration; varying responses 312 313 to the three example datasets highlighted that different solutions may be appropriate for different purposes. In particular, reactions to the "Play when Mouse Stops" and "Play while Mouse is 314 315 Moving" methods strongly suggested that they lend themselves to different types of data. 316 More research on applying aspects of musical theory in a spatial data context is required to 317 help with choosing which sounds to use and understanding how users interpret the sounds they hear 318 in terms of spatial data. This has been considered in the music literature (Neuhoff et al., 2002; 319 Rusconi et al., 2006), but only in a limited way, and there has been little GIS research directly addressing the interaction between different types of sound and spatial data. 320

The use of sound to represent spatial data is not a new topic, but little has been done in terms of evaluating its use and understanding the science behind the interpretation of sound in this situation. This work demonstrates that there is potential in the technique and that there are preferences for specific musical scales, but also highlights that further research and testing is needed if usable and effective tools are to be developed.

326

327 Acknowledgements

328 This work is based on the author's MSc Thesis for MSc GIS at University of Leicester,

329 completed in 2008. Thanks go to my supervisor, Pete Fisher, as well as Liz Farmer, Lex Comber and

330 Nick Tate at Leicester, and the volunteers from the Ordnance Survey (Jenny, Charlie, Carolina,

331 David, Catherine, Mark, Chris, Patrick, Omair, Adrian, Graham, Mark T, Izabela, Jon, Simon and

332 Steve). The author would also like to thank the numerous suggestions and improvements received333 from colleagues.

334

335 <u>References</u>

336 1Spatial, 2008. Radius Clarity, Cambridge, UK, <u>http://www.1spatial.com/products/radius_clarity/</u>,
337 [accessed 10 March 2010].

338 Andrienko, G., Andrienko, N., Jankowski, P., and MacEachren, A., 2007. Geovisual analytics for

- spatial decision support: Setting the research agenda. International Journal of Geographical
 Information Science 21(8), 839-857.
- 341 Appleton, K., Lovett, A., Dockerty, T. & Sünnenberg, G., 2004. Representing Uncertainty in
- 342 Visualisations of Future Landscapes. In: Proceedings of the XXth ISPRS Congress, Istanbul,
 343 Turkey.
- 344 Bearman, N., Lovett, A., 2010. Using Sound to Represent Positional Accuracy of Address Locations.
- 345 The Cartographic Journal 47(4), 308-314.

- 346 Brewster, S.A., McGookin, D. & Miller, C., 2006. Olfoto: Designing a Smell-Based Interaction. In
- 347 CHI 2006, Montréal, Québec, Canada.
- 348 <u>http://www.dcs.gla.ac.uk/~stephen/papers/CHI2006_brewster.pdf</u>, [accessed 7 July 2011].
- 349 Burrus, C., 2009. There's Math behind the Music!
- 350 <u>http://www.charlieburrus.com/MathInMusic/Index.htm</u>, [accessed 10 March 2010].
- 351 Clark Labs, 2008. IDRISI Andes, Worcester, Massachusetts, USA,
- 352 <u>http://www.clarklabs.org/products/index.cfm</u>, [accessed 10 March 2010].
- 353 Dykes, J. A., MacEachren, A. M., Kraak, M.-J., 2005. Exploring Geovisualization, Elsevier,
- Amsterdam, 710 pp.
- 355 EDINA, 2008. Digimap, http://edina.ac.uk/digimap/, [accessed 10 March 2010].
- 356 ESRI, 2011. ArcGIS 9.2, Redlands, California, USA,
- 357 <u>http://www.esri.com/software/arcgis/index.html</u>, [accessed 6 July 2011].
- Fisher, P.F., 1994. Hearing the Reliability in Classified Remotely Sensed Images. Cartography and
 Geographic Information Systems 21(1), 31-36.
- 360 Flowers, J.H., Buhman, D.C., Turnage, K., 1996. Data Sonification from the Desktop: Should Sound
- 361 be part of the Standard Data Analysis Software? In: Proceedings of ICAD 1996, Xerox Palo
- 362 Alto Research Center/Palo Alto, USA.
- Fortin, M., Voss, P., Lassonde, M., Lepore, F., 2007. Perte sensorielle et réorganisation cérébrale
 (Sensory loss and brain reorganization). Médecine/Science 23(11), 917-922.
- Gaver, W.W., 1989. The SonicFinder: An Interface That Uses Auditory Icons, Human-Computer
 Interaction 4(1), 67.
- 367 Gluck, M., 2000. The Use of Sound for Data Exploration. Bulletin of The American Society for
- 368 Information Science 26(5), 26-28.

- Hermann, T., 2008. "Taxonomy and definitions for sonification and auditory display" In Proceedings
 of the 14th International Conference on Auditory Display (ICAD2008), Paris, France, 2008,
 pp. 1-8.
- Hughes, R., 1996, The Development and Use of Tactile Mice in Visualisation, Ph.D. Dissertation,
 University of East Anglia, Norwich, United Kingdom.
- 374 Jacobson, R.D., Kitchin, R., Golledge, R., 2002. Multi-modal virtual reality for presenting
- 375 geographic information. In P.F.Fisher and D.J.Unwin (Eds.), Virtual Reality in Geography.
 376 Taylor & Francis, London, pp 382-400.
- Jenkins, G.J., Murphy, J.M., Sexton, D.S., Lowe, J.A., Jones, P. and Kilsby, C.G., 2009. UK Climate
 Breifing Report, Exeter ,UK.
- Jeong, W., Gluck, M., 2003. Multimodal geographic information systems: Adding haptic and
 auditory display. Journal of the American Society for Information Science and Technology
- 38159(3), 229-242.
- 382 Krygier, J.B., 1994. Sound and geographic visualization, In: MacEachren, A.M., Taylor, D.R.F.
- 383 (Eds.) Visualization in Modern Cartography, Elsevier Science, Oxford, UK, pp.149-166.
- 384 Lodha, S.K., Wilson, C.M., Sheehan, R.E., 1996. LISTEN: Sounding uncertainty visualization. In:
- 385 Proceedings of the 7th Conference on Visualisation, San Francisco, USA, pp. 189-195,
- 386 <u>http://portal.acm.org/citation.cfm?id=245053</u>, [accessed 4 March 2008].
- 387 Lodha, S.K., Heppe, T., Beahan, J., Joseph, A., Zane-Ulman, B., 1997. MUSE: A Musical Data
- 388 Sonification Toolkit. In: Proceedings of the ICAD 1997 Conference, Palo Alto, California,
- 389 USA, <u>http://www.icad.org/websiteV2.0/Conferences/ICAD97/Lodha.pdf</u>, [accessed 15 May
 390 2008].
- 391 MacEachren, A.M. 1992. Visualizing uncertain information. Cartographic Perspective 13, 10-19
- 392 MacVeigh, R., Jacobson, R.D., 2007. Increasing the Dimensionality of a Geographic Information
- 393 System (GIS) Using Auditory Display. In: Proceedings of the 13th International Conference

- 394 on Auditory Display (ICAD), Montreal, Canada, pp. 530-535,
- 395 <u>http://www.music.mcgill.ca/icad2007/proceedings.php</u>, [accessed 25 May 2008].
- Miele, J., Landau, S., Gilden, D. 2006. Talking TMAP: Automated generation of audio-tactile maps
 using Smith-Kettlewell's TMAP software. British Journal of Visual Impairment 24(2), 93 100.
- 570 100.
- 399 Neuhoff, J., Knight, R., Wayand, J., 2002. Pitch Change, Sonification and Musical Expertise: Which
- 400 Way is Up? In: Proceedings of the 2002 International Conference on Auditory Display,
 401 Kyoto, Japan, pp. 1-6,
- 402 <u>http://www.icad.org/websiteV2.0/Conferences/ICAD2002/proceedings/52_JohnNeuhoff.pdf,</u>
 403 [accessed 26 July 2009].
- 404 Oliveira, M.A., 2008. Electric Piano 2.5, San Paulo, Brazil,
- 405 <u>http://www.pianoeletronico.com.br/index-en.html</u> [accessed 10 March 2010].
- 406 Ordnance Survey, 2008a. Aerial Imagery of Snowdonia, Ordnance Survey, Southampton, UK.
- 407 Ordnance Survey, 2008b. MasterMap Topography & ITN Layer for Shirley Warren, Ordnance
 408 Survey, Southampton, UK.
- 409 Pauletto, S., Hunt, A., 2009. Interactive sonification of complex data. International Journal of
- 410 Human-Computer Studies 67(11), 923-933.
- Rusconi, E., Kwan, B., Giordano, B.L., Umiltà, C., Butterworth, B., 2006. Spatial representation of
 pitch height: the SMARC effect. Cognition 99(2), 113-129.
- 413 Turkey, J.W., 1990. Data-Based Graphics: Visual Display in the Decades to Come. Statistical
- 414 Science 5(3), 327-339.
- 415 Unwin, D.J., 1995. Geographical information systems and the problem of 'error and uncertainty'.
- 416 Progress in Human Geography 19(4), 549-558.
- 417 USGS, 2008. Global Visualization Viewer, Reston, Virginia, USA, <u>http://glovis.usgs.gov/</u> [accessed
- 418 10 March 2010].

- 419 Veregin, H., Krause, P., Pandya, R., Roethlisberger, R., 1993. Design and Development of an
 420 Interactive "Geiger Counter" for Exploratory Analysis of Spatial Data Quality. GIS/LIS 93,
 421 701-710.
- Zhang, J., Goodchild, M.F., 2002. Uncertainty in Geographical Information, Taylor & Francis,
 London, UK, 266pp.
- 424 Zhao, H., Plaisant, C., Shneiderman, B., Lazar, J., 2008. Data Sonification for Users with Visual
- 425 Impairment: A Case Study with Georeferenced Data. ACM Transactions on Computer-
- 426 Human Interaction 15(1), 1-28.